Lennard-Jones parameters for combustion and chemical kinetics modeling from full-dimensional intermolecular potentials

نویسندگان

  • Ahren W. Jasper
  • James A. Miller
چکیده

Lennard-Jones parameters for use in combustion modeling, as transport parameters and in pressure-dependent rate-coefficient calculations as collision rate parameters, are calculated from accurate full-dimensional intermolecular potentials. Several first-principles theoretical methods are considered. In the simplest approach, the intermolecular potential is isotropically averaged and used to determine Lennard-Jones parameters. This method works well for small species, but it is not suitable for larger species due to unphysical averaging over the repulsive wall. Another method considered is based on full-dimensional trajectory calculations of binary collisions. This method is found to be very accurate, predicting Lennard-Jones collision rates within ~10% of those obtained via tabulated (experimentally-based) Lennard-Jones parameters. Finally, a computationally efficient method is presented based on one-dimensional minimizations averaged over the colliding partners’ relative orientations. This method is shown to be both accurate and efficient. The good accuracy of the latter two approaches is shown to be a result of their explicit treatment of anisotropy. The effects of finite temperature vibrations and multiple conformers are quantified and are shown to be small. The choice of potential energy surface has a somewhat larger effect, and strategies based both on efficient semiempirical methods and on first-principles direct dynamics are considered. Overall, 75 systems are considered, including seven baths, targets as large as heptane, both molecules and radicals, and both hydrocarbons and oxygenates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lennard-Jones Energy Parameter for Pure Fluids from Scaled Particle Theory

By considering the fact that the surface tension of a real fluid arises from a combination of both repulsive and attractive forces between molecules, a new expression for the interfacial tension has been derived from scaled particle theory (SPT)  based on the work of cavity formation and the interaction energy between molecules. At the critical temperature, the interfacial tension between c...

متن کامل

Second Virial Coefficients for Nonspherical Molecules and Their Experimental Measurements

The virial coefficients can be obtained from statistical mechanics in connection with the intermolecular potentials. The intermolecular potential of polyatomic molecules is usually assumed to consist of a spherically symmetric component plus a contribution due to asphericaity of the molecular charge distribution. In this study, the second virial coefficients have been calculated for N2...

متن کامل

A Predictive Model for the Combustion Process in Dual Fuel Engines at Part Loads Using a Quasi Dimensional Multi Zone Model and Detailed Chemical Kinetics Mechanism

This work is carried out to investigate combustion characteristics of a dual fuel (diesel-gas) engine at part loads, using a quasi-dimensional multi zone combustion model (MZCM) for the combustion of diesel fuel and a single zone model with detailed chemical kinetics for the combustion of natural gas fuel. Chemical kinetic mechanisms consist of 184 reactions with 50 species. This combustion mod...

متن کامل

Multi-Dimensional Simulation of n-Heptane Combustion under HCCI Engine Condition Using Detailed Chemical Kinetics

In this study, an in-house multi-dimensional code has been developed which simulates the combustion of n-heptane in a Homogeneous Charge Compression Ignition (HCCI) engine. It couples the flow field computations with detailed chemical kinetic scheme which involves the multi-reactions equations. A chemical kinetic scheme solver has been developed and coupled for solving the chemical reactions an...

متن کامل

A Self-Consistent Technique for the Construction and Evaluation of the Three-Parameter Corresponding States Principles

A self-consistent approach for the evaluation of the existing three-parameter corresponding states principles of non-polar fluids and the calculation of the corresponding states parameters is presented. This self consistent approach is based upon the assumption that the contribution of the third parameter to the thermophysical properties is much smaller than the contributions of the first two p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013